Dalam matematika
dan ilmu komputer, teori graf adalah cabang kajian yang mempelajari
sifat-sifat graf.
Secara informal, suatu graf adalah himpunan benda-benda yang disebut simpul (vertex atau node)
yang terhubung oleh sisi (edge) atau busur (arc). Biasanya graf
digambarkan sebagai kumpulan titik-titik (melambangkan simpul) yang dihubungkan
oleh garis-garis (melambangkan sisi) atau garis berpanah (melambangkan busur).
Suatu sisi dapat menghubungkan suatu simpul dengan simpul yang sama. Sisi yang
demikian dinamakan gelang (loop).
Banyak sekali struktur yang bisa direpresentasikan dengan
graf, dan banyak masalah yang bisa diselesaikan dengan bantuan graf. Jaringan
persahabatan pada Facebook bisa direpresentasikan dengan graf, yakni simpul-simpulnya
adalah para pengguna Facebook dan ada sisi antar pengguna jika dan hanya jika
mereka berteman. Perkembangan algoritma
untuk menangani graf akan berdampak besar bagi ilmu komputer.
Sebuah struktur graf bisa dikembangkan dengan memberi bobot
pada tiap sisi. Graf berbobot dapat digunakan untuk melambangkan banyak konsep
berbeda. Sebagai contoh jika suatu graf melambangkan jaringan jalan maka
bobotnya bisa berarti panjang jalan maupun batas kecepatan tertinggi pada jalan
tertentu. Ekstensi lain pada graf adalah dengan membuat sisinya berarah, yang
secara teknis disebut graf berarah atau digraf (directed graph). Digraf
dengan sisi berbobot disebut jaringan. Jaringan banyak digunakan pada
cabang praktis teori graf yaitu analisis jaringan.
Perlu dicatat bahwa pada analisis jaringan, definisi kata "jaringan"
bisa berbeda, dan sering berarti graf sederhana (tanpa bobot dan arah).
Sedikit lebih formal
Suatu graph G dapat dinyatakan sebagai . Graph G
terdiri atas himpunan V yang berisikan simpul pada graf tersebut dan himpunan
dari E yang berisi sisi pada graf tersebut. Himpunan E dinyatakan sebagai
pasangan dari simpul yang ada dalam V. Sebagai contoh definisi dari graf pada
gambar di atas adalah : dan
Gambar dengan node yang sama dengan
yang di atas, tapi merupakan digraf.
Pada
digraf
maka pasangan-pasangan ini merupakan pasangan terurut. Untuk menyatakan digraf
(gambar kedua yang menggunakan tanda panah) kita dapat menggunakan himpunan edge
sebagai berikut :
Dalam
himpunan edge untuk digraf, urutan pasangan verteks menentukan arah dari
edge tersebut.
Dalam
teori graf, formalisasi ini untuk memudahkan ketika nanti harus membahas
terminologi selanjutnya yang berhubungan dengan graph. Beberapa terminologi
berhubungan dengan teori graf :
- Degree atau derajat dari suatu node, jumlah edge yang dimulai atau berakhir pada node tersebut. Node 5 berderajat 3. Node 1 berderajat 2.
- Path suatu jalur yang ada pada graph, misalnya antara 1 dan 6 ada path
- Cycle siklus ? path yang kembali melalui titik asal 2 kembali ke 2.
- Tree merupakan salah satu jenis graf yang tidak mengandung cycle. Jika edge f dan a dalam digraf di atas dihilangkan, digraf tersebut menjadi sebuah tree. Jumlah edge dalam suatu tree adalah nV - 1. Dimana nV adalah jumlah vertex
- Graf Tak Berarah (Undirected Graph) Graf G disebut graf tak berarah (undirected graph) jika setiap sisinya tidak berarah. Dengan kata lain (vi,vj)=(vj,vi)
- Graf Berarah (Directed Graph) Graf G disebut graf berarah (directed graph) jika setiap sisinya berarah. Titik awal dari suatu sisi disebut verteks awal (initial vertex) sedangkan titik akhir dari suatu sisi disebut verteks akhir (terminal vertex). Loop pada graf adalah sisi yang verteks awal dan verteks akhirnya sama.
Tidak ada komentar:
Posting Komentar